
Online Journal of Applied Knowledge Management 
A Publication of the International Institute for Applied Knowledge Management 

Volume 1, Issue 2, 2013 

 
 

105 
 

Managing Documents with NoSQL in 
Service Oriented Architecture 

 

Milorad P. Stević, The Higher Education Technical School of Professional 
Studies, Novi Sad, Serbia, milorad.stevic@live.com 

 

Abstract 

The need for including ever more information and business processes in current information systems brought the 
necessity of introducing large-scale document handling in relationally organized systems. This leads into 
thinking what kind of architecture would satisfy the need for stability and consistency from one hand and high 
data throughput and effective document management from the other, without the change in already developed 
client interfaces for various platforms. Another concern was the need for efficient backup procedures for 
considerable amount of documents. This paper shows that it is possible to implement architecture that satisfy 
these needs - it is a merge of relational database system, service oriented architecture and appropriate NoSQL 
database system, with several client interface applications communicating with databases through services 
oblivious of the fact that they stopped using documents stored in relational database, but rather in NoSQL 
database. Adding NoSQL to service-oriented architecture gave the system stability and consistency using 
relational engine for structured data types, effective document management and full text search using RavenDB 
for unstructured data types and services for achieving uniform data delivery to heterogeneous client 
applications. 

 

Keywords: Unstructured data types, NoSQL, Service-oriented architecture, Document management, 
Information systems, Partition tolerance, Scalability 

 

Introduction 

The information system (IS) analyzed in this paper is designed using service-oriented 
architecture approach with three layers: the database layer realized with Microsoft SQL 
Server database, the service layer realized with C# programming language and the front layer 
with several client interfaces for different platforms. In the beginning, successful modeling 
was very important for the core business processes and rules. Later on, requests for efficient 
document handling involving storing, archiving and searching for documents arose. 
Searching for selected text within previously stored documents and full text search 
capabilities became very important in the later stages of the development. Particular business 
requests are storing and archiving student thesis, seminars, projects and other school-related 
documents with mechanisms for detection the same or similar documents that would 
signalize fraud attempt. This involves some very large multimedia documents, especially 
within the graphic design and graphic engineering departments. Further, all documents 
regarding the distance learning system, also involving many large multimedia documents, 
must be stored in the system. The challenge has been even greater due to very limited funds, 
preventing the purchase of expensive equipment essential for storing and retrieving huge 
amounts of documents. Backup issues and availability of the system posed great demands on 
the system as well. 

Whereas the middle and front layers could support newly introduced features without any 
difficulties, the database layer was harder to adapt. Relational database management system 



Online Journal of Applied Knowledge Management 
A Publication of the International Institute for Applied Knowledge Management 

Volume 1, Issue 2, 2013 

 
 

106 
 

(RDBMS) was built for handling structured data, but has limitations when it comes to 
managing large and numerous unstructured data like, in this case, documents (Stonebraker et 
al., 2007). Storing vast amount of unstructured data in binary type columns in RDBMS 
tremendously increases demands in both hardware and human resources. The future growth 
of data can be addressed through vertical scaling, but further burdens the resources 
(Kossmann, Kraska & Loesing, 2010). This requires complex replication, which is costly. 
Distributed systems based on RDBMS tend to be rigid and hard to administer. Using static 
scheme in RDBMS is excellent for managing structured data. However, it is rather 
demanding when it comes to unstructured data. For unstructured data, schema-free systems 
are better and easier for handling (Hellerstein, Stonebraker & Hamilton, 2007). NoSQL 
databases offer a different approach to this problem. They are designed for handling large 
amount of unstructured data by horizontal scaling, thus removing the obstacles regarding 
future growth of data (Hellerstein, Stonebraker & Hamilton, 2007). In addition to that, some 
of them offer a full text search capability, which is essential for this project (Kovacevic et al., 
2011). On the other hand, most NoSQL databases are not ACID (Atomicity, Consistency, 
Isolation, Durability) but CAP (Consistency, Availability, Partition Tolerance), which is 
relevant when deciding whether to use file system, RDBMS or NoSQL (Wada et al., 2011; 
Stonebraker, 2010). In addition, isolation levels are different on various NoSQL platforms, if 
implemented at all, while considered mandatory on RDBMS (Fekete, Goldrei & Asenjo, 
2009). 

Since the most important goal in this project is to efficiently store and handle large-scale 
documents, the choice of NoSQL for handling unstructured documents must be justified. 
RDBMS is surely capable of doing the job, but it is not efficient enough in handling 
unstructured data. Although file system can be used for storing documents, it lacks 
mechanisms for handling documents that can be used automatically in IS. It is necessary to 
analyze all relevant technical information in order to confirm that NoSQL best suits the needs 
of this project. In addition, the great question is how to organize the system in order to 
RDBMS and NoSQL work together for the best. Because the next great task is full text search 
capability, the choice of RavenDB has been made because it incorporates Apache Lucene 
features (http://lucene.apache.org/) and is suitable for full text search based on fuzzy search 
(Kovacevic et al., 2011; Milosavljević, Boberić & Surla, 2010). This method of searching 
allows implementation of intelligent search methods in order to disclose fraud attempts. 
Considering RavenDB is equipped with horizontal scaling capabilities that require minimum 
administrative intervention, it became the choice for document handling issues. 

 

Methods 

Problem outline 

This study was part of a greater project that dealt with building and implementing IS in High 
Technical School of Professional Studies in Novi Sad. There are 80 teachers and 1600 active 
students in 4 years of studies with average of 12 courses per year. Additionally, there are 2 
distance learning programs actively held. In most courses it is expected from students to write 
at least 1 seminar and 1 project material per course and every student must write their thesis 
as final effort towards graduation. It is requested that every single document must be 
preserved in database so later access to material could be achieved. This is important from 
both educational and fraud detection reasons. In addition to these requests, it is necessary to 
provide 2 GB of personal space for every student and 20 GB of personal space for every 



Online Journal of Applied Knowledge Management 
A Publication of the International Institute for Applied Knowledge Management 

Volume 1, Issue 2, 2013 

 
 

107 
 

teacher. Access to all files must be provided exclusively from various client interfaces that are 
part of the IS, both from within institution and from home and no other type of access is 
allowed for security reasons. Document version control must be enabled in order for a teacher 
to track down the progress of a student regarding every written assignment. Full text search 
capability is essential since it is a great amount of electronic material in stake. All these 
requests were combined with the demand of inexpensive implementation, so there were no 
rack-based servers and no storage area networks with high volume and high-speed disks. 

 

Proposed hybrid structure 

RDBMS was built to handle all the structured data about entities and processes in this project, 
but handling documents was something that was a matter of great importance and careful 
research prior making final decisions. It was important to ensure enough space for holding 
predicted amount of documents, safe access to documents and document existence in case of 
any kind of disaster. All those requests eliminated document handling based on a file system 
because of complex use and access control. Another circumstance, which denied use of file 
system approach, was the need for exclusive management of documents from within the IS. 
RDBMS was rejected as a potential solution for document management since there is no easy 
and inexpensive way of distributing RDBMS across many nodes. Replicating such distributed 
nodes would be even harder in some disaster-recovery scenario. There are ways to distribute 
RDBMS, but they are expensive and time consuming. 

RavenDB was acceptable solution for managing documents: it can handle great amount of 
potentially large files and has no schema so it is suitable for unstructured data. It is 
distributed by design and running RavenDB on multiple nodes is the default way of running 
it. This was important because it was much easier to plan hardware acquisition for the 
project. Nodes need not be the same and it was possible to use almost any hardware 
infrastructure (Baker et al., 2011). All these properties helped achieving availability without 
complex, expensive hardware infrastructure. This enabled use of many small servers and 
adding or removing servers was easy task. Disaster recovery strategy was determined by the 
way distributivity was achieved - termination of a server was acceptable since all data was on 
multiple servers instantly and all that was needed to recover full availability is adding another 
server in the system (Abadi, 2012). At the same time, dealing with disaster recovery scenario 
solved backup issues - if the system was able to survive the disaster scenario, it was protected 
and well backed up. 

 

Dimensioning the data 

All findings were based on 1 academic year of observation, with 1600 students, 80 teachers, 
10 study programs where multimedia and graphic design were not involved as mayor courses, 
4 study programs based on multimedia and graphic design as mayor courses. There were 350 
students that graduated in that academic year. Total of 477 different courses were held. In 
addition, for clarity reasons, all courses that required both text-based and multimedia-based 
assignment were shown as multimedia-based courses. Since these were only a few and 
multimedia files are much bigger that text-based files, this did not affect accuracy of the 
results. No course required more than one multimedia-based assignment. 

 



Online Journal of Applied Knowledge Management 
A Publication of the International Institute for Applied Knowledge Management 

Volume 1, Issue 2, 2013 

 
 

108 
 

Table 1: Structure of courses based on type of seminar work required 

Type of course Number of 
courses 

Number of 
participants 

Number of 
documents 

Avg 
size 

Space 

Requires text-based 
seminar work 

251 9650 1 1,7 MB 16,4 GB 

Requires 
multimedia-based 
seminar work 

51 3460 1 78 MB 269,9 GB 

Does not require 
documents 

175 6090 - - - 

Total 286,3 GB 

Although sum of number of courses is equal to the total number of courses (477), it doesn't 
have to be this way, this is due to approximation taken for clarity reasons 

Table 2:Structure of courses based on type of project work required 

Type of course Number of 
courses 

Number of 
participants 

Number of 
documents 

Avg 
size 

Space 

Requires text-based 
project 

202 13928 1 2,3 MB 32 GB 

Requires 
multimedia-based 
project 

41 2205 1 83 MB 183 GB 

Does not require 
documents 

234 3067 - - - 

Total 215 GB 

Although sum of number of courses is equal to the total number of courses (477), it doesn't 
have to be this way, this is due to approximation taken for clarity reasons 

Table 3: Structure of courses based on type of documents included in electronic material 

Type of course Number of 
courses 

Avg number 
of 
documents 

Avg 
size 

Space 

Contains text-based 
documents 

455 7 3 MB 9,5 GB 

Contains 
multimedia-based 
documents 

359 15 20 MB 107,7 GB 

Does not require 
documents 

22 - - - 

Total 117,2 GB 

 



Online Journal of Applied Knowledge Management 
A Publication of the International Institute for Applied Knowledge Management 

Volume 1, Issue 2, 2013 

 
 

109 
 

Table 4: Structure of space needed for private use 

User Number of 
users 

Avg size Space 

Teacher 80 20 GB 1,6 TB 

Student 1600 2 GB 3,2 TB 

Total 4,8 TB 

 

To the complete amount of space needed to handle documents it was necessary to add space 
for student thesis: 350 students times 5,2 MB (average space for one thesis) equals 1,8 GB of 
needed space on year basis. 

 

Discussion 

Implementation challenges 

Since this project was not about achieving great speed and efficiency, the problem is reduced 
to finding the best solution for handling large-scale amount of documents in terms of storing 
and performing full text search on them. Storing documents means usage of disk space for 
documents in efficient manner regarding economy, security and scaling possibilities. Full text 
search was a request that was essential for the project since fraud attempt control was very 
important in educational institution. Storing is directly correlated with amount of space 
needed for keeping documents, while full text search is connected with amount of documents 
that are the target group for this operation. Further, it is important to segregate amount of 
documents that will represent increment on yearly basis so this trend could be tracked for 
scale-planning purposes. Separation of documents that are target to full text search from those 
that are not is important for search-planning purposes. This is where storage rules intersect 
with document segregation: it is important vise efficiency reasons to place documents that are 
either in group that is incrementing or in group that is targeted for full text search on storages 
that are most efficient, because it is expected that these documents will have heaviest access 
frequency. 

This means that text-based documents are subject to full text search and multimedia-based 
documents are not. Seminars, projects and thesis are type of documents that will require new 
space every year since new students will take place of the old ones and generate new amounts 
of seminars, projects and thesis. Course content and student/professor private space will not 
increase over time, because it is expected that number of courses, students and professors will 
remain the same over time. 

 

 

 

 

 

 



Online Journal of Applied Knowledge Management 
A Publication of the International Institute for Applied Knowledge Management 

Volume 1, Issue 2, 2013 

 
 

110 
 

Table 5: Structure of documents that will and will not cause new space consumption 
every year 

Document types Causing new space consumption every 
year 

Static 

Seminars 286,3 GB 0 

Projects 215 GB 0 

Thesis 1,8 GB 0 

Course content 0 117,2 GB 

Private space 0 4,8 TB 

Total 503,1 GB 4,9 TB 

 

Table 6: Structure of documents regarding full text search 

Document types Subject of full text search Not subject of full text 
search 

Text-based 
(seminars, 
projects) 

48,4 GB (16,4 GB + 32 GB) 0 

Multimedia-based 
(seminars, 
projects) 

0 452,9 GB (269,9 GB + 183 
GB) 

Thesis 1,8 GB 0 

Course content 0 117,2 GB 

Private space 0 4,8 TB 

Total 50,2 GB 5,4 TB 

 

Total amount of space needed for the project to start is 5,4 TB and amount of documents that 
is expected to be accessed very frequently is 503,1 GB which means that storage structure 
should be in accordance with this - 503,1 GB on as fast as affordable disks and the rest of 4,9 
TB on slower disks. It is expected in 10-year period of time that space demands will be 
increased by 10 times 503,1 GB = 5 TB which gives a total of 10 TB of storage space. 

 

Benefits of the selected solution 

This trend shows that use of file system for storing and manipulating documents will be more 
and more tiring over time and must be based on expensive rack-based hardware configuration 
with very fast disks. Combining with redundancy needed to achieve disaster recovery 
capabilities, the request for storage space is even greater. In the case of disaster recovery 
scenario involving natural disasters (earthquake, flood, fire...) where distant storage is needed 
for recovery, it is very expensive choice. If security issues are added to this, where access 



Online Journal of Applied Knowledge Management 
A Publication of the International Institute for Applied Knowledge Management 

Volume 1, Issue 2, 2013 

 
 

111 
 

control to documents is required it shows that in order to achieve this request, big 
administrative effort is expected to conduct access control for documents stored in the 
system. Another problem is accessing documents from within IS where location of a 
document is recorded inside RDBMS, but actual documents are stored on several disk 
locations. This poses the problem due to the need to achieve transactional manipulation of 
both meta data about the document and the document itself, for they are stored in different 
locations. Full text search on documents stored on a file system could be achieved using some 
proven technology like Lucene (Prasad & Patel, 2005; Milosavljević, Boberić & Surla, 2010). 

Another potential solution is to store documents inside RDBMS, which is problematic from 
several points of view. Documents are unstructured data and RDBMS is not meant to deal 
well with these kinds of data, although it can be done. Horizontal scaling is hard to achieve in 
modern RDBMS and when it is to be achieved, it is by consuming a lot of human 
(administrative), hardware and financial resources. Disaster recovery scenarios are as 
problematic as with file system solution, since it has to be done using replication to a distance 
place with heavy load. This is problematic from capacity and bandwidth point of view. Good 
aspect of this solution is when backup is performed, both meta data and documents are 
backed up at once. Transactional manipulation of meta data about the documents and 
documents itself is well supported. This solution provides good access control mechanisms, 
which could be made internally inside IS. Full text search is a problem, since RDBMS is not 
made for this task, mainly because documents are unstructured data that can be very different 
in structure. However, modern RDBMS evolved and included some tools for this, depending 
of the vendor. 

Using RavenDB for handling documents was the most appropriate solution because it deals 
with large number of documents and it is built for managing unstructured data. RavenDB 
runs as distributed system so several servers are serving documents at the same time, which is 
suitable for load balancing purposes (Wada et al., 2011). Server termination is acceptable by 
design, thus it can run on inexpensive hardware (Wada et al., 2011). Distributivity relies on 
horizontal scaling possibilities, which are almost automatic in RavenDB. A good approach for 
developing disaster recovery scenarios is enabled through support for efficient replication 
among distant servers. Unlike some other NoSQL solutions, RavenDB supports ACID 
characteristics. Backup solutions are as safe and efficient as with RDBMS since documents 
are stored within database. RavenDB allows full text search through proven Apache Lucene 
technology. 

 

SOA Integration 

Having RDBMS handling structured data and RavenDB handling unstructured data, it was 
necessary to integrate those two in the existing service-oriented architecture (SOA) based IS. 
For effective appliance of the proposed solution, it is important to integrate those platforms 
into a single database platform, from the client point of view. Since the development of 
various client platforms was planned as service-dependent, clients were not getting data from 
databases directly, but rather through the service layer. This data manipulation is done by the 
service layer of IS, as shown (Fig. 1). Because there were several different client interfaces to 
handle, it was important to come out with a solution to the problem that would require 
minimum effort for adoption. Service layer written in C# was appropriate solution, since it 
was possible to connect to either RDBMS or NoSQL from the service layer. This enabled the 
service layer to create the unique abstract data layer for various client interfaces. The service 



Online Journal of Applied Knowledge Management 
A Publication of the International Institute for Applied Knowledge Management 

Volume 1, Issue 2, 2013 

 
 

112 
 

layer was doing data abstraction in accordance with client requests and sometimes it was 
gathering data from RDBMS, sometimes from NoSQL and sometimes from both. As a result, 
service layer was building objects and delivering those to the client layer. Client layer was not 
aware of the physical location of the data. When organized like this, the development of the 
client layer was much less error-prone, because data abstraction was done on the service layer 
of the SOA. Furthermore, it was possible to extend data management optimization because 
data could be handled and transferred as SOAP or as REST, as appropriate. Combining SOAP 
and REST based services into unique service layer widened the business potential of the 
platform, enabling simplified development of mobile-targeted client interfaces. 

 

Fig. 1. Integration of RavenDB in existing SOA 

 

Security constraints and data integrity 

The proposed architecture is complex and requires appropriate security solution. Handling 
structured and sensitive data was the task entrusted to RDBMS, since it is robust and reliable 
database platform. RDBMS was in charge of conducting all authentication processes in the 
system. Every request that implied sensitive data manipulation generated from the client 
layer, regardless of the client type, was first checked for security authorization handled by the 
RDBMS. Only requests that were marked as valid on the RDBMS could perform data 
manipulation. Enforcing these rules enabled the system to be trustworthy since it was relying 
on RDBMS for security constraints. Service layer was central part of the process once again, 
since all client requests for data manipulation were going through this layer and it was 
possible to segregate security check processes and data manipulation processes. 

Data integrity and access control was guaranteed because documents were kept in the NoSQL 
database, rather than on the file system. This approach denied unauthorized access to 
documents from the file-system level since documents were not stored on the file system. 
This means that although system administrator has high system privileges, data integrity of 
documents involved is preserved. 

 

 

 



Online Journal of Applied Knowledge Management 
A Publication of the International Institute for Applied Knowledge Management 

Volume 1, Issue 2, 2013 

 
 

113 
 

Implications for research 

Further research could take place in measuring performances of a system that rely on 
different kinds of NoSQL, respectively. Since this project did not depend on performance 
characteristics of the solution, but rather on usability of the system based on scaling and full 
text search capabilities, measuring performances did not take place. Nevertheless, it would be 
very important to explore effectiveness of systems based on other NoSQL solutions in order 
to create recommendations and best practices for different usage scenarios. 

Another field of research could be development of a system for automatic fraud attempt 
detection which would detect situations in which students could try to use prohibited amount 
of others work in their thesis, seminar or a project or try to use others work without proper 
approval. Rules would have to be set for these situations and if students break any of those 
rules, the system would take predesigned automated action. 

Ecology is nowadays very important field of research. Possibility for deployment of used 
hardware as server instances for NoSQL, knowing that system is partition tolerant and can 
survive server termination is very interesting application of ecology in IS. 

 

Implications for practice 

Expanding existing IS to an area of document management is demanding and sensitive 
because it is expected from IS to handle new requests with ease, but securely at the same 
time. It is important to make expansion as inexpensive as possible. Implementing solution 
that includes NoSQL database for managing documents in SOA has significant implications 
for practitioners. 

� SOA based systems can be extended with NoSQL database for handling unstructured 
data without changes on client layer because communication is realized between service 
and database layer and various client interface development continues without change. 

� NoSQL is suitable for handling large amount of documents because it has horizontal 
scaling possibilities. 

� Horizontal scaling and distributive characteristics enable the system to survive server 
termination. 

� Disaster recovery capabilities are present even with large amount of data. 

� Even old and used hardware could take place in a system like this because of partition 
tolerance part of CAP theorem. 

 

Limitations 

The study shows acceptable adoption of NoSQL technology inside particular SOA and any 
insight is limited to this context. When applied in different surroundings, the model could 
require adaptation. 

 

 

 



Online Journal of Applied Knowledge Management 
A Publication of the International Institute for Applied Knowledge Management 

Volume 1, Issue 2, 2013 

 
 

114 
 

Notes 

 

1 Apache Lucene, available at: http://lucene.apache.org (accessed 01 February 
2013). 

2 RavenDB, available at: http://ravendb.net (accessed 01 February 2013). 
3 The projects using Apache Lucene, available at: http://wiki.apache.org/jakarta-

lucene/PoweredBy/ (accessed 01 February 2013). 
4 Project example using RavenDB, available at: 

http://gorodinski.com/blog/2012/08/28/porting-from-sql-with-nhibernate-to-
ravendb/ (accessed 01 February 2013). 

 

References 

Milosavljević, B., Boberić, D. & Surla, D. (2010). Retrieval of bibliographic records using 
Apache Lucene. The Electronic Library, Vol. 28 No: 4, pp. 525-539. 

Prasad, A.R.D. & Patel, D. (2005). Lucene search engine: an overview. Proceedings of the 
DRTC-HP International Workshop on Building Digital Libraries Using DSpace, 7-11 
March 2005, DRTC, Bangalore. Retrieved from 
http://drtc.isibang.ac.in/xmlui/bitstream/handle/1849/244/I_lucene%20search.pdf?seq
uence=1 

Abadi, J. (2012). Consistency Tradeoffs in Modern Distributed Database System Design. The 
IEEE Computer Society, Vol. 45 No: 2, pp. 37-42. 

Stonebraker, M. et al. (2007). The End of an Architectural Era (It's Time for a Complete 
Rewrite). Proc. VLDB Endowment (VLDB 07), ACM. pp. 1150-1160. 

Baker, J. et al. (2011). Megastore: Providing Scalable, Highly Available Storage for 
Interactive Services. Proc. 5th Biennial Conf. Innovative Data Systems Research 
(CIDR 11), ACM. pp. 223-234. 

Stonebraker, M. (2010). Errors in Database Systems, Eventual Consistency, and the CAP 
Theorem. blog, Comm. ACM,5. Retreived from http://cacm.acm.org/blogs/blog-
cacm83396-errors-in-database-systems-eventual-consistency-and-the-cap-theorem. 

Wada, H. et al. (2011). Data Consistency Properties and the Trade-offs in Commercial Cloud 
Storage: The Consumers' Perspective. Proc. 5th Biennial Conf. Innovative Data 
Systems Research (CIDR 11), ACM, pp. 134-143. 

Fekete, A., Goldrei, S. & Asenjo, J. P. (2009). Quantifying isolation anomalies. Proc Very 
Large Databases (VLDB'09), pages 467–478. 

Kossmann, D., Kraska, T., & Loesing, S. (2010). An Evaluation of Alternative Architectures 
for Transaction Processing in the Cloud. ACM International Conference on 
Management of Data, pages 579–590. ACM. 

Kovacevic, A. et al. (2011). Automatic extraction of metadata from scientific publications for 
CRIS systems. Program: electronic library and information systems, Vol. 45 Iss: 4, 
pp. 376 - 396. 

Hellerstein, J. M., Stonebraker, M. & Hamilton, J. R. (2007). Architecture of a database 
system. Foundations and Trends in Databases, 1(2), pp. 141–259. 



Online Journal of Applied Knowledge Management 
A Publication of the International Institute for Applied Knowledge Management 

Volume 1, Issue 2, 2013 

 
 

115 
 

Biography 

Milorad P. Stević is a Database Architect with 14 years of experience (Progress versions 8,9; 
Oracle version 10g, MSSQL Server versions 2005, 2008, 2012), He is also a .NET Software 
Architect with a 8 years of experience in development for the Windows platform, Web, Web 
Services, Client/Server and n-tiered distributed applications, broad experience in all parts of 
project life cycle including the analysis, design, development, implementation testing, 
debugging/profiling and support. He is a full-time faculty member at The Higher Education 
Technical School of Professional Studies, Novi Sad, Serbia. 


